Nachrichten, Gerüchte, Meldungen und Berichte aus der IT-Szene

Redaktion: Heinz Schmitz


Sortiermaschine für Atome

Atome sortieren
Die Fluoreszenzmikroskop-Aufnahmen verdeutlichen den Sortiervorgang. (Quelle: Carsten Robens/Uni Bonn)

Mal angenommen, Sie stehen im Supermarkt und möchten Apfelsaft kaufen. Leider sind alle Kisten halb leer, weil andere Kunden wahllos einzelne Flaschen entnommen haben. Sie füllen daher Ihre Kiste mühselig Flasche für Flasche auf. Doch halt: Die Nachbarkiste ist ja genau gegengleich besetzt! Wo bei Ihrer Kiste Lücken sind, stehen dort Flaschen. Könnten Sie diese Flaschen auf einen Schlag anheben und in Ihre Kiste setzen, wäre diese danach direkt voll. Sie könnten sich also viel Arbeit ersparen.

 

Für halbleere Getränkekisten gibt es eine solche Lösung leider (noch) nicht. Physiker der Universität Bonn wollen aber künftig auf diese Weise Tausende von Atomen beliebig sortieren – und das in Sekundenschnelle. Rund um den Globus suchen Wissenschaftler momentan nach Methoden, mit denen solche Sortiervorgänge im Mikrokosmos möglich sind. Der Vorschlag der Bonner Forscher könnte etwa die Entwicklung künftiger Quantencomputer einen deutlichen Schritt voran bringen. In diesen lässt man Atome gezielt miteinander interagieren, um so für Berechnungen quantenmechanische Effekte ausnutzen zu können. Dazu müssen die Teilchen in räumliche Nähe zueinander gebracht werden.

 

Magnetisierte Atome auf optischen Förderbändern

Die Physiker nutzen für ihre Sortiermaschine eine besondere Eigenschaft von Atomen: Diese drehen sich wie kleine Kreisel um ihre eigene Achse. Die Drehrichtung – der Spin – lässt sich mit Mikrowellen beeinflussen. Die Physiker versetzten so zunächst alle Atome in ihrem Experiment in dieselbe Drehrichtung.

 

In diesem Zustand konnten sie die Teilchen auf einen Laserstrahl laden.

Zuvor mussten sie den Laser aber so manipulieren, dass er zum Spin ihrer Teilchen passte, ein Vorgang, der Polarisation genannt wird. Die Atome wurden nun von dem polarisierten Laserstrahl so festgehalten, dass sie sich nicht bewegen konnten. Dabei besetzte jedes Teilchen auf dem Laserstrahl einen bestimmten Platz – ähnlich wie die Flaschen in der Kiste.

 

Wie in der Getränkebox blieben allerdings auch im Laserstrahl einige Plätze frei. „Wir haben daher bei einzelnen Atomen ganz gezielt die Drehrichtung umgedreht“, erklärt Dr. Andrea Alberti, Projektleiter am Institut für Angewandte Physik der Universität Bonn. „Diese Teilchen waren daraufhin nicht mehr von unserem Laserstrahl gefangen. Wir konnten sie aber mit einem zweiten, anders polarisierten Laserstrahl greifen und damit nach Wunsch verschieben.“

 

Der Transport-Strahl kann im Prinzip beliebig viele Atome gleichzeitig bewegen. Diese behalten währenddessen ihre Position zueinander bei. Ähnlich wie im Beispiel mit den Flaschen lassen sich so also mehrere Teilchen auf einmal anheben und auf einen Rutsch in die Lücken zwischen anderen Atomen setzen. „Unsere Sortiermethode ist dadurch extrem effizient“, erklärt der Erstautor der Studie Carsten Robens. „Es macht keinen großen Unterschied, ob wir hundert oder tausend Atome sortieren – der Zeitaufwand steigt nur unerheblich an.“ In ihrem jetzt publizierten Experiment arbeiteten die Forscher zurzeit nur mit vier Atomen.

 

Die Methode eignet sich im Prinzip, um beliebige Atommuster zu erzeugen. Dadurch ist sie auch für Festkörperphysiker interessant, da sich mit ihr zum Beispiel das Verhalten von Halbleiterkristallen unter bestimmten Bedingungen untersuchen lässt.

 

Originalpublikation

Carsten Robens, Jonathan Zopes, Wolfgang Alt, Stefan Brakhane, Dieter Meschede, und Andrea Alberti: Low-entropy states of neutral atoms in polarization-synthesized optical lattices; Physical Review Letters

https://doi.org/10.1103/PhysRevLett.118.065302

 

Siehe auch:

http://quantum-technologies.iap.uni-bonn.de

 

Zurück