Nachrichten, Gerüchte, Meldungen und Berichte aus der IT-Szene

Redaktion: Heinz Schmitz


Abhörsicher kommunizieren mit verschränkten Photonen

Quantenquelle
Quantenquelle des Fraunhofer IOF. Entwickelt, um auch nach extremen Belastungen noch voll einsatzfähig zu sein. (Quelle: Fraunhofer IOF)

Ob Informationen aus der Kommunikation zweier Banken, von Regierungsorganisationen oder privaten Personen: Verschlüsselung von Daten beruht heute meist auf mathematischen Verfahren. Das Problem ist, dass durch die wachsende Rechenleistung von Computern das Decodieren verschlüsselter Nachrichten immer einfacher wird – Entwicklungen wie der Quantencomputer könnten aktuelle Verschlüsselungsverfahren sogar ganz aushebeln, da hier deutlich effektivere Entschlüsselungs- Algorithmen zur Anwendung kommen können, als es mit herkömmlichen Rechnern möglich ist.

 

Eine Lösung bietet die Verschlüsselung mithilfe eines physikalischen Prinzips, der sogenannten Quantenverschränkung: Dabei werden zunächst Zwillingsphotonen erzeugt, die bezüglich bestimmter Quantenzustände miteinander verschränkt und damit voneinander abhängig sind. Das heißt, wird beispielsweise die Polarisation des einen Photons gemessen, ist automatisch auch die des Zwillings bekannt.

 

Das Besondere daran: Der Effekt funktioniert unabhängig von der Distanz der Photonen zueinander. Darauf aufbauend können Schlüssel erzeugt werden, denen Sender und Empfänger auf einen Blick ansehen können, ob Dritte versucht haben, sie zu manipulieren oder abzuhören. »Das zentrale Element dabei ist die Quantenquelle, in der die Photonen verschränkt werden«, erklärt Dr.-Ing. Erik Beckert vom Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF aus Jena. »In einer ausgeklügelten laseroptischen Baugruppe werden die verschränkten Lichtquanten erzeugt und dann über unterschiedliche Kanäle an die beiden Parteien geleitet, die ihre Kommunikation vor Mithörern schützen möchten.«

 

Photonen aus dem All

Doch wie kommen die verschränkten Photonen an ihren Bestimmungsort? Schickt man sie beispielsweise über eine Freistrahlstrecke durch die Luft oder durch eine Glasfaser, ist die Reichweite begrenzt, da die Turbulenzen der Atmosphäre beziehungsweise die Dämpfung der Glasfaser die Verschränkung stören. Die Lösung: Die Quantenquelle verteilt die verschränkten Photonen von einem Satelliten aus. Dadurch müssen die Photonen nur durch ein relativ kurzes Stück Atmosphäre reisen, bis sie bei ihrem Empfänger sind. Um jedoch eine Quantenquelle auf einem Satelliten zu platzieren, muss diese äußerst stabil sein. Denn sie muss sowohl den Belastungen eines Raketenstarts als auch den besonderen Bedingungen im Weltraum, zum Beispiel starken Temperaturschwankungen und Weltraumstrahlung, widerstehen.

 

Forscher des Fraunhofer IOF haben eine Antwort gefunden und entwickeln eine Quantenquelle, die so stabil ist, dass die präzise Kalibrierung und die diffizilen Justierungen selbst durch die extremen Belastungen eines Raketenstarts oder die unwirtlichen Bedingungen im Weltall nicht gestört werden. »Unsere Quantenquelle ist ein Beispiel optomechanischer Ingenieurskunst«, sagt Beckert. »Lasersysteme zur Verschränkung und Verteilung von Photonen sind sehr empfindlich, was die Genauigkeit angeht. Schon kleinste Veränderungen in der Justierung machen das gesamte System unbrauchbar. Ein System muss daher so robust sein, dass seine volle Performance nicht einmal durch einen Raketenstart beeinträchtigt wird.«

Zurück