Nachrichten, Gerüchte, Meldungen und Berichte aus der IT-Szene

Redaktion: Heinz Schmitz


Motor aus einem Atom

Seit der industriellen Revolution spielen Wärmekraftmaschinen in unserer Gesellschaft eine entscheidende Rolle. Sie wandeln thermische Energie in mechanische Arbeit um, wie zum Beispiel in Fahrzeugen, und sind aus unserem modernen Leben nicht mehr wegzudenken. Gleichzeitig führt die Miniaturisierung zu immer kleineren technischen Geräten. Die Wissenschaftler um Univ.-Prof Dr. Kilian Singer, Leiter des Projekts an der JGU und inzwischen Professor an der Universität Kassel, nutzten eine Paul-Falle, um ein einzelnes, elektrisch geladenes Kalzium-Atom zu speichern. Das Atom kann durch elektrisches Rauschen geheizt und mittels Laserstrahlen gekühlt werden. Dadurch durchläuft es einen thermodynamischen Kreisprozess, vergleichbar mit den Abläufen im Zylinder eines klassischen Motors. Die erzeugte Leistung wird in eine Schwingung des Atoms umgEsetzt. Somit spielt das Atom die Rolle des Motors und des Energiespeichers gleichermaßen.

Atommotor Vakuumkammer

Blick in Vakuumkammer, in der sich die Atom-Falle befindet. (Foto: AG Quantum, JGU)

 

In ausführlichen Messreihen konnten die Physiker das thermodynamische Verhalten des Motors charakterisieren. Wie die Forscher nun in ihrer Veröffentlichung zeigen, liefert der Ein-Atom-Motor eine Leistung von 10-22 Watt und hat eine Effizienz von 0,3 Prozent. Normiert man die Leistung der Einzelatommaschine auf die geringe Masse eines Atoms, ist ihre Leistung vergleichbar mit der eines Automotors. "Durch die Umkehr des Kreisprozesses können wir die Maschine als einatomigen Kühlschrank betreiben und damit gekoppelte Nanosysteme kühlen", teilt Johannes Roßnagel, Erstautor der Studie, dazu mit.

Teil des Lasersystems, mit dem das Atom abwechselnd geheizt und gekühlt wird. (Foto: AG Quantum, JGU)

 

Besonders wichtig an diesen Forschungen ist aber, dass die Realisierung eines solchen Nanomotors einen Einblick in die Thermodynamik einzelner Teilchen erlaubt, ein hochaktuelles Forschungsgebiet. In Zukunft ist geplant, die Arbeitstemperatur der Maschine weiter abzusenken und thermodynamische Quanteneffekte zu untersuchen. Theoretische Arbeiten haben vorgeschlagen, die Leistung einer Wärmekraftmaschine durch die Kopplung an ein Quantenbad zu steigern. So bieten sich vielfältige Möglichkeiten, über die Paradigmen der klassischen Thermodynamik hinauszugehen und neuartige Motoren zu bauen.

 

 

Originalveröffentlichung:

Johannes Roßnagel et al.: A single-atom heat engine, Science, 15. April 2016, DOI: 10.1126/science.aad6320

 

Siehe auch:

http://www.quantenbit.physik.uni-mainz.de/quantum-thermodynamics/

https://www.uni-kassel.de/fb10/institute/physik/forschungsgruppen/licht-materie-wechselwirkung/prof-dr-kilian-singer.html

http://science.sciencemag.org/content/352/6283/325

http://www.sciencemag.org/news/2015/10/scientists-build-heat-engine-single-atom

Zurück